RADIATION & CANCER

Dr. Rajendra Badwe
Professor & Head Breast Service
Director, Tata Memorial Centre
Mumbai, India
Radiation and Tolerance

- **Killer Dose** 40,000 mSv
- **Tolerable Dose** 20,000 mSv
- **Maximum cumulative allowed**: 100 mSv

- **Effects are Deterministic (Threshold)**
- **Stochastic (Lineal, cumulative, No threshold)**
Medical uses of radiation - Diagnostic

- Almost all imaging tests use radiation
- X-rays, CT scans, angiograms etc
- Worldwide, approximately 330 radiological examinations are done per 1000 population
- Extremely useful for diagnosis of most diseases including cancer
- Radio-isotopes: Bones scan, PET Scan, Perfusion scans
Radiation & Cancer Outcome

- Uterine Cervical Cancer > 90% survival
- Laryngeal Cancer > 95% survival
- Ewing’s sarcoma & Hodgkin’s lymphoma melt away with radiotherapy
- Radiotherapy improves cure rates by 30% when added to Surgery & Chemotherapy
Radiation: Stochastic
(Linear, Cumulative & no Threshold)

- Natural radiation occurs from various sources
 - Earth, soil
 - Outer space

- Nuclear power plants and health issues
 - Cancer
 - Congenital anomalies
 - Accidents
• Highest incidence in the north east
• No nuclear reactors in these states
• Incidence in Mumbai, Chennai, Bangalore, Ahmadabad and Delhi (cities with one or more nuclear reactors) – similar to other metropolitan cities with no reactors
Cancer incidence in India

Areas with no nuclear reactors
Areas with 1/more nuclear reactors
Karunagapally - Kerala

- High natural radiation
- Thorium sands
- Study conducted by Regional Cancer Centre, Trivandrum
CANCER INCIDENCE IN RELATION TO OUTSIDE HOUSE RADIATION LEVEL

KARUNAGAPPALLY TALUK (2001-2004)

Out Rad. (mGy/yr)
Maximum 37.167
Range of
Median 1.835-3.059
AAR
M-122.1 F-86.9

Out Rad. (mGy/yr)
Maximum 29.825
Range of
Median 0.918-1.377
AAR
M-127.9 F-101.8

Out Rad. (mGy/yr)
Maximum 76.475
Range of
Median 3.212-5.277
AAR
M-115.9 F-78.0

N.B.R.R.
Eldorado (Canada)
Uranium workers

• 17660 uranium workers followed for several decades
• Compared with general Canadian population
• Lower mortality rates from all causes and all cancers
• Lower incidence of cancers
• “healthy worker” effect?

Lane RS et al. Radiation Res 2010; Oct 4
French nuclear power plants

- Study conducted in 20 km radius of 29 nuclear installations in France
- Incidence rates comparable to national incidence rates as reference (cancer, cong. Anomalies, sterility)
- No increase in childhood Leukemia seen
Finnish nuclear power plants

• Three approaches
 – ecological analysis at municipality level
 – residential cohorts defined from census data
 – case-control analysis with individual residential histories
• Compared to normal Finnish population
• No increase in childhood leukemia or other cancers in areas next to the Finnish power plants

Finnish nuclear power plants - 2

- 15,619 Finnish nuclear reactor workers studied
- No increase in cancer incidence
- No association between cancer incidence and cumulative radiation dose

Radiation exposure in Taiwan

- A Co-60 source was mixed in metal scrap, melted and drawn into steel bars which were used in the construction of 1700 apartments for about 10,000 residents in 1982-84.
- Residents were irradiated at least for 9 years, some up to 20 years.
- Annual dose in the first year 1983 was from about 50 mSv/y, up to 600 mSv/y.
- Total averaged dose started at 0.4 Sv, and went up to 6 Sv.

Luan YC, et al. The true health effects of radiation
Taiwan – observed vs expected cancer deaths

Luan YC, et al. The true health effects of radiation
Taiwan incident - conclusions

- Chronic radiation exposure may actually be beneficial to humans
- Lower incidence of cancers compared to expected
- Lower incidence of congenital anomalies compared to expected.
ACCIDENTS

Fukushima

Chernobyl

DISASTER ENVIRONMENT AGENCY/REUTERS
ACCIDENTS: FACTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Fukushima Daiichi</th>
<th>Chernobyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related deaths</td>
<td>No deaths so far due to radiation</td>
<td>A UN report places the total confirmed deaths from radiation at 64 as of 2008. Disputes continue about how many will eventually die</td>
</tr>
<tr>
<td>Long-term health damage</td>
<td>Not yet known, but risks to human health are thought to be low</td>
<td>Among the residents of Belarus, the Russian Federation and Ukraine, there had been up to the year 2005 more than 6,000 cases of thyroid cancer reported in children and adolescents who were exposed at the time of the accident, and more cases can be expected during the next decades</td>
</tr>
<tr>
<td>Current status</td>
<td>Officials say radiation leaks are continuing and could eventually exceed those at Chernobyl. The priority is restoring adequate coolant to the fuel ponds and the reactors themselves</td>
<td>The damaged reactor is now encased in a concrete shell. A new containment structure is due to be completed by 2014</td>
</tr>
</tbody>
</table>
Why tame the Nuclear Power?

- Enslave technology to serve immortality

- We tame technology to improve
 - quality of life
 - Ratio of benefit to risk
Figure 5. Correlation amongst Human Development Indicators

Continuous lines are the analytical fits for the scatter plots. Fit expressions are given near the X axis.
Worldwide Severe Accidents, Aggregate Fatalities and Normalized Fatalities for all Energy Options during 1969-2000

<table>
<thead>
<tr>
<th>Energy Chain</th>
<th>No. of Accidents</th>
<th>Total Fatalities</th>
<th>Normalised Fatalities (per GWA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-global</td>
<td>1221</td>
<td>25107</td>
<td>0.876</td>
</tr>
<tr>
<td>Coal with China excluded</td>
<td>177</td>
<td>7090</td>
<td>0.690</td>
</tr>
<tr>
<td>Oil</td>
<td>397</td>
<td>20283</td>
<td>0.436</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>125</td>
<td>1978</td>
<td>0.093</td>
</tr>
<tr>
<td>Hydro</td>
<td>11</td>
<td>29938</td>
<td>4.265</td>
</tr>
<tr>
<td>*Hydro-2</td>
<td>10</td>
<td>3938</td>
<td>0.561</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1</td>
<td>33</td>
<td>0.06**</td>
</tr>
</tbody>
</table>
Nagasaki Before and after
Nagasaki Hypocenter
Chernobyl : Now
Thank you